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Conventional analyses of piezoelectric laminated structures are based on linear theories.
Investigations of non-linear characteristics are still relatively scarce. In this paper, static,
dynamic, and control effects of a piezothermoelastic laminated beam with an initial
non-linear large static deflection (the von Karman type geometric non-linear deformation)
and temperature and electric inputs are studied. It is assumed that the piezoelectric layers
are uniformly distributed on the top and bottom surfaces of the beam. Beam equations
incorporating the non-linear deflections, piezoelectric layers, temperature and electric
effects are simplified from the generic piezothermoelastic shell equations. Analytical
solutions of non-linear static deflection and eigenvalue problems of the non-linearly
deformed beam including temperature and electric effects are derived. Active control effects
on non-linear static deflections and natural frequencies imposed by the piezoelectric
actuators via high control voltages are investigated. A numerical example is provided and
response behavior is investigated.
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1. INTRODUCTION

Recent studies and analyses of piezoelectric laminated structures and systems are mostly
carried out using small deflection linear theories [1–3]. Investigations of non-linear
characteristics are still relatively scarce. This study is concerned with an investigation of
static, dynamic, and control characteristics of a non-linear piezoelectric laminated beam
subjected to mechanical, temperature, and electric excitations. Pai et al. [4] proposed a
refined model for non-linear composite plate laminated with piezoelectric layers. Yu [5]
reviewed recent studies of linear and non-linear theories of elastic and piezoelectric plates.
Sreeram et al. [6] investigated a non-linear hysteresis modelling of a piezoelectric actuator.
Librescu [7] proposed a refined geometrical non-linear theory of anisotropic laminated
shells. Linear thermo–electromechanical behavior of distributed piezoelectric sensors and
actuators has also been recently studied [8, 9]. A theory on geometrical non-linearity of
piezothermoelastic shell laminates simultaneously exposed to mechanical, electric, and
thermal fields has been recently proposed [10]. Tzou and Zhou [11] investigated static and
dynamic control of a circular plate with geometrical non-linearity. In this study, static,
dynamic and control effects of a piezothermoelastic laminated beam with an initial
non-linear large static deflection (the von Karman type geometric non-linear deformation)
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and temperature/electric inputs are studied. System equations are defined and simplified
to compare them with a classical non-linear beam equation first. Analytical solutions,
including all design parameters, of non-linear static deflection and free vibrations of the
non-linearly deformed beam are derived. Active control effects on non-linear static
deflections and natural frequencies imposed by the piezoelectric actuators via high control
voltages are investigated.

2. NON-LINEAR PIEZOTHERMOELASTIC LAMINATED BEAM

A piezothermoelastic laminated beam is shown in Figure 1, in which two piezoelectric
layers are perfectly bonded on the top and the bottom surfaces of a steel beam. It is
assumed that the laminated beam undergoes a von Karman type geometrical non-linearity
and temperature and electric inputs. Dimensions of the beam are: L the beam length, b
the beam width, he the steel layer thickness, hp the piezoelectric layer thickness. Thus, the
total laminated beam thickness is h= he +2hp .

Simplifying the governing equations of the nonlinear piezothermoelastic shell laminate
[12], one obtains the non-linear piezothermoelastic beam equations in the longitudinal (x)
direction and the transverse (z) direction, respectively:

1Nxx

1x
+ qx = rhüx ,

12Mxx

1x2 +
1Nxx

1x
1uz

1x
+Nxx

12uz

1x2 + qz = rhüz , (1a, b)

where the mass per unit length rh=a f rk dz=2rp hp + re he ; rp and re are the densities
of the piezoelectric layer and the elastic steel layer, respectively. Nxx and Mxx are the
membrane force and bending moment per unit width. Since the beam width b is constant,
one can define Nx = bNxx and Mx = bMxx . Note that the forces and moments include all
elastic, electric, and temperature effects:

Nx =0YA	 +2Yp A	 p +2A	 p
e2

31

o331s0
xx + e31 b(fc

33 +fc
31)

+$0e31 p3

o33
− lp 10g

−he /2

−(he /2+ hp)

ub dz+g
he /2+ hp

he /2

ub dz1− l g
he /2

−he /2

ub dz%, (2a)

Figure 1. A piezothermoelastic laminated beam.
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Mx =0YI+2Yp Ip +2Ip
e2

31

o331kxx + e31 bra(fc
33 −fc

31)

+$0e31 p3

o33
− lp 10g

−he /2

−(he /2+ hp)

uzb dz+g
he /2+ hp

he /2

uzb dz1− l g
he /2

−he /2

uzb dz%, (2b)

where A	 = bhe , A	 p = bhp are the cross-sectional areas of the elastic steel layer and the
piezoelectric layers, respectively; Y and Yp are Young’s moduli of the steel and the
piezoelectric material; I= bh3

e /12, Ip = bh3
p /12+ bhp (he + hp )2/2 are the area moments of

the steel layer and the piezoelectric layer, respectively; fc
33 and fc

31 are the control voltages
applied to the top and the bottom piezoelectric layers; u is the temperature variation; e31,
o33, p3 and lp are the piezoelectric stress coefficient, the dielectric coefficient, the pyroelectric
coefficient, and the stress–temperature coefficient for the piezoelectric material,
respectively; l is the steel stress–temperature coefficient; s0

xx and kxx are the membrane strain
and bending strain; and ra =(he + hp )/2 is the actuator moment arm. Also, one can define
px = bqx , pz = bqz (mechanical excitations per unit length), and m̄= rbh=2rp A	 p + rA	
(mass per unit beam length). Then, equations (1a) and (1b) can be rewritten as

1Nx

1x
+ px = m̄üx ,

12Mx

1x2 +
1Nx

1x
1uz

1x
+Nx

12uz

1x2 + pz = m̄üz . (3a, b)

Using equations (2a) and (2b), one can write the axial force and bending moment in a
compact form:

Nx =K	 s0
xx +Nc

x +Nt
x , Mx =D	 kxx +Mc

x +Mt
x , (4a, b)

where K	 is the membrane stiffness K	 =(YA	 +2Yp A	 p +2A	 p (e2
31 /o33)); D	 is the bending

stiffness D	 =(YI+2Yp Ip +2Ip (e2
31 /o33)); s0

xx is the membrane strain and kxx is the bending
strain with the von Karman type non-linearity:

s0
xx = 1ux /1x+ 1

2 (1uz /1x)2, kxx = 1bx /1x=−12uz /1x2. (5a, b)

Nt
x is the axial force induced by the temperature rise; Mt

x is the moment due to the
temperature rise; Nc

x is the axial force induced by the control potential; and Mc
x is the

control moment induced by the control potential:

Nc
x = e31 b(fc

33 +fc
31), Mc

x = e31 bra(fc
33 −fc

31), (6a, b)

Nt
x =$0e31 p3

o33
− lp 10g

−he /2

−(he /2+ hp)

ub dz+g
he /2+ hp

he /2

ub dz1− l g
he /2

−he /2

ub dz%, (6c)

Mt
x =$0e31 p3

o33
− lp 10g

−he /2

−(he /2+ hp)

uzb dz+g
he /2+ hp

he /2

uzb dz1− l g
he /2

−he /2

uzb dz%. (6d)

Boundary conditions at the two ends of the laminated beam, x=0 and x=L, are

Nx =N*x or ux = u*x ; Mx =M*x or bx = b*x ; (7a, b)

1Mx /1x+Nx 1uz /1x=Q*z or uz = u*z , (7c)

where the quantities with the asterisk * are the prescribed values on the boundaries. Note
that usually either force boundary conditions or displacement boundary conditions are
selected for a given physical boundary condition.
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2.1.      

It is assumed that the mechanical excitations in the longitudinal and transverse
directions are zero, i.e., pz = px =0. Substituting the axial force and bending moment into
equations (3a) and (3b), one can write

K	
1

1x $1ux

1x
+ 1

2 01uz

1x1
2

%+ e31 b
1

1x
(fc

33 +fc
31)+$0e31 p3

o33
− lp 1

×0g
−he /2

−(he /2+ hp)

1u

1x
b dz+g

he /2+ hp

he /2

1u

1x
b dz1− l g

he /2

−he /2

1u

1x
b dz%= m̄üx , (8a)

6−D	
14uz

1x4 + e31 bra 12

1x2 (fc
33 −fc

31)+$0e31 p3

o33
− lp 1

×0g
−he /2

−(he /2+ hp)

12u

1x2 zb dz+g
he /2+ hp

he /2

12u

1x2 zb dz1− l g
he /2

−he /2

12u

1x2 zb dz%7
+6K	 1

1x $1ux

1x
+ 1

2 01uz

1x1
2

%+ e31 b
1

1x
(fc

33 +fc
31)+$0e31 p3

o33
− lp1

×0g
−he /2

−(he /2+ hp)

1u

1x
b da3 +g

he /2+ hp

he /2

1u

1x
b dz1− l g

he /2

−he /2

1u

1x
b dz%7 1uz

1x

+6K	 $1ux

1x
+ 1

2 01uz

1x1
2

%+ e31 b(fc
33 +fc

31)+$0e31 p3

o33
− lp1

×0g
−he /2

−(he /2+ hp)

ub dz+g
he /2+ hp

he /2

ub dz1− l g
he /2

−he /2

ub dz%7 12uz

1x2 = m̄üz . (8b)

Since the longitudinal inertia is negligible, i.e., m̄üx 2 0, factoring the partial derivatives
and regrouping the force and moments gives

1Nx /1x=0, 12Mx /1x2 +Nx 12uz /1x2 = m̄üz . (9a, b)

Equation (9a) implies that the axial force Nx is not a function of x, i.e., Nx =constant.
Considering individual elastic, control, and temperature effects, one can further write
equation (9b) as

−D	 14uz /1x4 + 12Mc
x /1x2 + 12Mt

x /1x2 +Nx 12uz /1x2 = m̄üz , (10)

where Nx =K	 [1ux /1x+ 1
2 (1uz /1x)2]+Nc

x +Nt
x . The non-linear piezothermoelastic beam

equation can be further simplified when boundary conditions are specified. In the following
two cases, one is used to compare with the standard equation and the other is for a detailed
parametric study.

2.2.  /

If the longitudinal motion either at x=0 or at x=L is not constrained (free
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expansion/contraction), the axial force Nx vanishes when the boundary conditions are
imposed. The differential equation then can be simplified to

−D	 14uz /1x4 + f(x, t)= m̄üz , (11)

where f(x, t)= 12Mc
x /1x2 + 12Mt

x /1x2. This is a standard form of the beam transverse
vibration [13]. However, note that the physical meaning is much more complicated than
the conventional form, due to the coupling of mechanical, electric, and temperature fields
in the non-linear piezothermoelastic laminated beam.

2.3.      

Boundary conditions for a simply supported piezothermoelastic laminated beam with
both ends fixed are

uz = ux =0 and Mx =0, (12)

at both beam ends: x=0 and x=L. Furthermore, it is assumed the voltage f and
temperature variation u are uniform in the x direction. This implies that f and u are not
functions of co-ordinate x. Then, the transverse equation becomes

−D	 14uz /1x4 +Nx 12uz /1x2 = m̄üz , (13)

where the axial force Nx =K	 [1ux /1x+ 1
2 (1uz /1x)2]+Nc

x +Nt
x . Solution procedures for

the simply supported non-linear piezothermoelastic beam equation are presented next.
Numerical results and control effectiveness are presented in case studies.

3. SOLUTION PROCEDURES

In order to investigate the coupling among elastic, electric, temperature and control
effects of the piezothermoelastic laminated beam, analytical solutions, including all design
and control variables, are derived. The solution procedures are divided into two parts. The
first step is to solve for non-linear static solutions and the second step is to solve for
dynamic solutions with respect to the non-linear static equilibrium position. To separate
the static and dynamic solutions, one can write the displacement and axial force as

ux = ux,s + ux,d , uz = uz,s + uz,d , (14)

Nx =Nx,s +Nx,d , fc
3j =fc

3j,s +fc
3j,d , (15)

where the subscript ,s is the static component and ,d is the dynamic component; ux,s , uz,s ,
ux,d and uz,d are, respectively, the longitudinal/transverse static and corresponding dynamic
displacements; Nx,s and Nx,d are the static and dynamic axial forces; fc

3j,s and fc
3j,d ( j=1, 3)

are the static and dynamic applied voltages, respectively. Then, the equation of motion
and the axial force equation can be expressed as

−D	 0d4uz,s

dx4 +
14uz,d

1x4 1+(Nx,s +Nx,d )1d2uz,s

dx2 +
12uz,d

1x2 = m̄üz,d , (16)

(Nx,s +Nx,d )=K	 $0dux,s

dx
+

1ux,d

1x 1+ 1
2 0duz,s

dx
+

1uz,d

1x 1
2

%+(Nc
x,s +Nc

x,d )+Nt
x , (17)

where the static and dynamic axial forces induced by the applied control voltages are
Nc

x,s = e31 b(fc
33,s +fc

31,s ), Nc
x,d = e31 b(fc

33,d +fc
31,d ). Usually, the static axial force Nx,s is more

inferential than the dynamic axial force Nx,d [14]. Thus, neglecting the dynamic axial force
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Nx,d , one can define the static displacement and force equilibrium equations of the
piezothermoelastic laminated beam subjected to static electric and temperature loads:

D	 (d4uz,s /dx4)−Nx,s (d2uz,s /dx2)=0, Nx,s =K	 [(dux,s /dx)+ 1
2 (duz,s /dx)2]+Nc

x,s +Nt
x .

(18, 19)

The partial differential equation for the dynamic motion becomes

−D	 (14uz,d /1x4)+Nx,s 012uz,d

1x2 1= m̄üz,d . (20)

Equations (18–20) and equation (12) constitute the governing equations and boundary
conditions for the simply supported non-linear deflection and vibration of the simply
supported non-linear piezothermoelastic laminated beam. Since the vibration analysis is
based on the statically non-linear deformed position, static solutions of the non-linear
piezoelectric laminated beam are presented first. Dynamic analysis of the beam with the
initial non-linear deflection is investigated next.

3.1.     -  

For the static problem defined by equations (18) and (19), the static deflection uz,s and
the static axial force Nx,s are evaluated. Recall that the longitudinal displacement boundary
conditions are

ux,s =0, at x=0 and x=L. (21)

Integrating the slope over the beam length and using the boundary conditions results in

g
L

0 0dux,s

dx 1 dx= ux,s =x=L − ux,s =x=0 =0. (22)

Integrating the static axial force Nx,s , equation (19), over the beam length and applying
equation (22), one can derive

g
L

0 61
K	

[Nx,s −Nc
x,s −Nt

x ]− 1
2 0duz,s

dx 1
2

7 dx=0. (23)

Since Nx,s =constant, the axial force equation becomes

Nx,s =
K	
2L g

L

0 0duz,s

dx 1
2

dx+
1
L g

L

0

(Nc
x,s +Nt

x ) dx. (24)

Defining an eigenvalue l=zNx,s /D	 and simplifying the static differential equation (18)
of the non-linear piezothermoelastic beam gives

d4uz,s /dx4 − l2 d2uz,s /dx2 =0. (25)

The general solution for the static differential equation is

uz,s =C1 +C2 x+C3 sinh lx+C4 cosh lx, (26)

where Ci (i=1, 2, 3, 4) are the integration constants determined by the boundary
conditions. For the simply supported beam defined above, the boundary conditions at
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x=0 and x=L are: uz,s =0 and Mx =0 where Mx =−D	 d2uz,s /dx2 + (Mc
x,s +Mt

x ). Then,
imposing the boundary conditions to the general solution gives the four equations:

C1 +C4 =0, C1 +C2 L+C3 sinh lL+C4 cosh lL=0, (27a, b)

−D	 (C4 l2)+ (Mc
x,s +Mt

x )=0, (27c)

−D	 (C3 l2 sinh lL+C4 l2 cosh lL)+ (Mc
x,s +Mt

x )=0. (27d)

Solving these four equations, one can determine the constants Ci . Upon substitutions, the
static transverse displacement can be derived as

uz,s =[(Mc
x,s +Mt

x )/D	 l2] [cosh lx−(tanh lL/2) sinh lx−1]

= [(Mc
x,s +Mt

x )/D	 l2] (cosh l(L/2− x)/(cosh lL/2)−1). (28)

Assuming a dimensionless quantity v= l(L/2)= (L/2)zNx,s /D	 , l2 =4v2/L2, and
Nx,s =4v2D	 /L2, one can redefine the static transverse displacement equation as

uz,s =
(Mc

x,s +Mt
x )L2

4D	 v2
(cosh v(1−2x/L)/cosh v−1). (29)

Since

g
L

0 0duz,s

dx 1
2

dx=$(Mc
x,s +Mt

x )L
2D	 v cosh v %

2

g
L

0

sinh2 v(1−2x/L) dx

=[(Mc
x,s +Mt

x )2L3/8D	 2v2] (tanh v/v−1/cosh2 v), (30)

one can obtain the static axial force

Nx,s =
K	
2L

(Mc
x,s +Mt

x )2L3

8D	 2v2 0tanh v
v

−
1

cosh2 v1+(Nc
x,s +Nt

x ). (31)

Furthermore, since Nx,s =(4v2D	 )/L2, the above equation can be simplified to

K	 (Mc
x,s +Mt

x )2L2

16D	 2v2 0tanh v
v

−
1

cosh2 v1+(Nc
x,s +Nt

x )=
4v2D	
L2 . (32)

Accordingly, with specified electrical control potential f and the temperature rise u, one
can calculate the corresponding bending moments Mc

x,s , Mt
x and the axial forces Nc

x,s , Nt
x

and then solve the dimensionless quantity v in equation (32). Next, one can solve the total
static axial force Nx,s by equation (31) and the static transverse displacement uz,s by equation
(28) where l2 = (2v/L)2.

3.2.        - 

It is assumed that the vibration analysis is in the vicinity of the non-linear (static)
deformed equilibrium position. Frequency control of the piezothermoelastic laminated
beam with an initial non-linear deflection is studied in this section. From equation (20),
the free dynamic partial differential equation can be written as

D	 14uz,d /1x4 −Nx,s 1
2uz,d /1x2 + m̄üz,d =0. (33)

Examining the equation reveals that this is the case of a transversely vibrating beam with
axial force effect. Note that the electric and temperature effects are added to the classical
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elastic problem [15]. When the beam oscillates at one of its natural modes, the solution
of dynamic differential equation has the form of

uz,d =U(x) sin (vt+8), (34)

where U(x) is the modal shape function, v is the frequency and 8 is the phase. Substitution
and simplification gives an ordinary differential equation:

D	 d4U/dx4 −Nx,s d2U/dx2 − m̄v2U=0. (35)

The solution of this equation, satisfying the prescribed boundary conditions, furnishes the
modal shape functions. For the simply supported beam, the dynamic boundary conditions
are zero displacements and zero moments at x=0 and x=L:

U(x)=0, d2U(x)/dx2 =0. (36)

These conditions are satisfied by taking the modal shape function as

Ui (x)=Ci sin (ipx/L), (37)

where i is the mode number and i=1, 2, 3, . . . , a. Substituting this expression into
equation (35) gives the natural frequency corresponding to the mode shape Ui (x):

vi =(i2p2/L2)zD	 /m̄z1+Nx,s L2/i2D	 p2. (38)

It is observed that the natural frequency is clearly larger than that obtained when the axial
force Nx,s is absent. A case study in which non-linear deflections, temperature and control
effects of the non-linear piezothermoelastic laminated beam are studied is presented next.

4. CASE STUDIES

It is assumed that a simply supported three layer PZT/steel/PZT beam with dimensions:
width b=0·0508 m, length L=1 m, steel thickness he =0·00635 m, and lead zirconate
titanate (PZT) thickness hp =254×10−6 m is used in the case study, Figure 2. Detailed
material properties are summarized in Table 1 and Table 2.

Next, the bending stiffness D	 and the membrane stiffness K	 can be respectively
calculated as: D	 =YI+2Yp Ip +2Ip e2

31 /o33 =93·765 (Nm2); K	 =YA	 +2Yp A	 p +2A	 p e2
31 /

o33 =23·986×106 (N). Note that the values of YI, 2Yp Ip , and 2Ip e2
31 /o33 in the

PZT/steel/PZT beam are 80, 18 and 2% of the total bending stiffness D	 , respectively, and
values of YA	 , 2Yp A	 p , and 2A	 p e2

31 /o33 are 92·8, 6·5 and 0·7% of the total membrane stiffness
K	 . It is assumed that applied control voltages fc

33 and fc
31 are uniformly distributed and

fc
31 =−fc

33 =f, and the temperature rise u is also uniform along the x-axis and is of
linear variation through the thickness: u(z)= āz+ ē, where ā=(ut − ub )/(he +2hp ),
c̄=(ut + ub )/2; ut is the top surface temperature and ub is the bottom surface temperature

Figure 2. A PZT/steel/PZT laminated beam.
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T 1

PZT material properties

Young’s modulus (GPa) Yx =Yy =Yz =61
Shear modulus (GPa) Gxy =Gxz =Gyz =23·64
Poisson’s ratio m=0·29
Density (kg/m3) r=7·7×103

Thermal expansion coefficient (m/m/°C) a=1·2×10−6

Thermal stress coefficient (N/m2/°C) lp =1·03×105

Electric permittivity (F/m) o33 =1·65×10−8

Piezoelectric constant (C/N (m/V)) d31 =171×10−12

Piezoelectric stress (C/m2) e31 =10·43
Pyroelectric constant (C/m2/°C) p3 =0·25×10−4

T 2

Steel material properties

Young’s modulus (GPa) Yx =Yy =Yz =68·95
Shear modulus (GPa) Gxy =Gxz =Gyz =26·52
Poisson’s ratio m=0·30
Density (kg/m3) r=7·75×103

Thermal expansion coefficient (m/m/°C) a=1·1×10−5

Thermal stress coefficient (N/m2/°C) l=1·08×106

of the beam. Note that ub =−ut = u which implies that the total temperature difference
between the top and bottom surfaces is 2u. Then, the electric control bending moment Mc

x

and the temperature induced moment Mt
x are

Mc
x =0·003499f (Nm), Mt

x =0·34856u (Nm), (39, 40)

in which 98% is due to the steel and only 2% is due to the PZT in the temperature induced
bending moment. (Recall that the ceramics are less sensitive to temperatures when
compared with steels.) Equation (32) then can be simplified to

(tanh v/v−1/cosh2 v)=64v4D	 3/K	 (Mc
x +Mt

x )2L4. (41)

Denoting y1 = (tanh v/v−1/cosh2 v) and y2 =64v4D	 3/[K	 (Mc
x +Mt

x )2L4], one can plot y1 (v)
and y2 (v). Intersections of y1 (v) and y2 (v) gives solutions v of equation (41), such as shown

Figure 3. Solution v for various control voltages: –·–, 50; ----, 100; –· ·–, 150; --- ---, 200; ——, 250; –·–·, 300 V;
temperature u=10°C.
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Figure 4. Solution v for various temperatures (voltage 8=100 V): –·–, 10; ----, 20; –· ·–, 30; ···· ····, 40; ——,
50; –·–·, 60°C.

Figure 5. Solution v for various beam lengths (u=10°C and 8=100 V): –·–, 0·5; ----, 0·6; –· ·–, 0·7; ···· ····,
0·8; ——, 0·9; –·–·, 1·0 m.

Figure 6. Static deflections versus voltage changes (temperature u=10°C).

in Figures 3–5. Then, the axial force Nx,s and the beam center deflection (at x=L/2) can
be calculated and its temperature/control effects studied:

Nx,s =4v2D	 /L2, uz,s =x=L/2 = (Mc
x +Mt

x )L2/4D	 v2(1/cosh v−1). (42, 43)

Detailed numerical results of the PZT/steel/PZT laminated beam subjected to various
temperatures and control voltages are listed in Tables A1–A3 in Appendix A. Static
deflection of the beam center (x=L/2) with respect to the applied control voltage (at
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Figure 7. Static deflections versus temperature changes (voltage 8=100 V).

Figure 8. Static deflections for various beam lengths (u=10°C and 8=100 V).

Figure 9. Axial forces versus beam deflections.

u=10°C), temperature rise (at f=100 V), and beam length (with f=100 V, u=10°C)
are plotted in Figures 6–8. Note that the 10°C temperature represents a total of 20°C
difference between the top and bottom surfaces. The deflection and voltage relation,
Figure 6, gives a general guideline that the control voltage induced displacement can be
used to compensate the temperature induced deflection or the non-linear deflection.
Equivalent axial force with respect to the beam center deflection is presented next.

Figure 9 shows the axial force versus the static deflections of the beam center,
which reveals that the induced axial control force stiffens the beam and consequently the
natural frequencies of the beam increase. (Note that this force can also be viewed as
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Figure 10. Frequency variations versus control voltages (f=10°C): w, f1; q, f2; t, f3.

Figure 11. Frequency variations versus temperatures (f=100 V): w, f1; q, f2; t, f3.

Figure 12. Frequency variations versus lengths (f=10°C, f=100 V): w, f1; q, f2; t, f3.

an axial control force.) The frequency increase can be expressed by the quantity
{[1+ (Nx,s L2/i2D	 p2)]1/2 −1}×100 percent, where i is the mode number, and the results are
shown in Figures 10–12. The percentage of variation for the first mode is higher than those
of the higher modes. The numerical results suggest that both static deflection and dynamic
behaviors of the simply supported non-linear PZT/steel/PZT laminated beam are
influenced by the temperature and they also can be controlled by the control voltages
applied to the piezoelectric actuators.
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5. SUMMARY AND CONCLUSIONS

The conventional analysis of piezoelectric laminated structures and systems often utilizes
small deflection linear theories. Response behavior and control characteristics of
non-linear piezoelectric systems are relatively unknown. In this study, non-linear static
deflections, dynamic characteristic, temperature effects, and control characteristics of a
simply supported piezothermoelastic laminated beam with an initial non-linear large static
deflection were investigated.

A detailed mathematical model of the piezoelectric laminated beam was defined and
analytical solutions including temperature, control voltage, induced axial force and
bending moment effects were derived. The reduced non-linear beam equation was identical
to the classical non-linear beam equation, if the temperature and electric terms were
removed. Non-linear static deflections with the influence of temperature and control
voltage were studied. Small amplitude oscillations with respect to the non-linearly
deformed static equilibrium position were investigated. It was observed that the total
bending stiffness of the PZT/steel/PZT laminated beam is 80% due to the steel and 20%
due to the PZT (elasticity: 18% and piezoelectricity: 2%); the total membrane stiffness is
92·8% due to the steel and 7·2% due to PZT (elasticity: 6·5% and piezoelectricity: 0·7%)
in the laminated beam. The stiffness (contributed) by piezoelectricity is relatively
insignificant. Simulation results also suggested that the voltage induced control
displacement/force can be used to compensate the non-linear static deflection, temperature
effects, and natural frequencies of the piezoelectric laminated beam.
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APPENDIX A: DETAILED NUMERICAL RESULTS

T A1

Voltage effect of the laminated beam (u=10°C, L=1 m)

freq. increase (%)
roots axial force mid. point disp. ZXXXXXXCXXXXXXV

f(V) v Nx,s (N) uz,s (mm) i=1 i=2 i=3

50 1·248 584·2 2·942 27·72 7·60 3·45
100 1·281 615·5 3·018 29·04 7·99 3·63
150 1·314 647·6 3·089 30·37 8·39 3·81
200 1·345 678·5 3·159 31·65 8·78 3·99
250 1·375 709·1 3·226 32·90 9·16 4·17
300 1·405 740·4 3·290 34·17 9·54 4·35

T A2

Temperature effect of the laminated beam (f=100 V, L=1 m)

freq. increase (%)
roots axial force mid. point disp. ZXXXXXXCXXXXXXV

u (°C) v Nx,s (N) uz,s (mm) i=1 i=2 i=3

10 1·281 615·5 3·018 29·04 7·99 3·63
20 1·791 1203·1 4·110 51·66 15·11 6·98
30 2·147 1728·9 4·810 69·36 21·12 9·89
40 2·429 2212·9 5·329 84·15 26·40 12·50
50 2·667 2667·8 5·743 97·05 31·17 14·90
60 2·877 3104·4 6·081 108·68 35·60 17·16

T A3

Effect of beam length (u=10°C, f=100 V)

freq. increase (%)
roots axial force mid. point disp. ZXXXXXXCXXXXXXV

L (m) v Nx,s (N) uz,s (mm) i=1 i=2 i=3

0·5 0·483 350·0 1·165 4·62 1·17 0·52
0·6 0·650 440·2 1·564 8·22 2·12 0·95
0·7 0·817 510·9 1·957 12·72 3·33 1·49
0·8 0·979 561·7 2·332 17·83 4·74 2·14
0·9 1·134 595·4 2·685 23·34 6·32 2·85
1·0 1·281 615·5 3·018 29·04 7·99 3·63


