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Conventional analyses of piezoelectric laminated structures are based on linear theories.
Investigations of non-linear characteristics are still relatively scarce. In this paper, static,
dynamic, and control effects of a piezothermoelastic laminated beam with an initial
non-linear large static deflection (the von Karman type geometric non-linear deformation)
and temperature and electric inputs are studied. It is assumed that the piezoelectric layers
are uniformly distributed on the top and bottom surfaces of the beam. Beam equations
incorporating the non-linear deflections, piezoelectric layers, temperature and electric
effects are simplified from the generic piezothermoelastic shell equations. Analytical
solutions of non-linear static deflection and eigenvalue problems of the non-linearly
deformed beam including temperature and electric effects are derived. Active control effects
on non-linear static deflections and natural frequencies imposed by the piezoelectric
actuators via high control voltages are investigated. A numerical example is provided and
response behavior is investigated.
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1. INTRODUCTION

Recent studies and analyses of piezoelectric laminated structures and systems are mostly
carried out using small deflection linear theories [1-3]. Investigations of non-linear
characteristics are still relatively scarce. This study is concerned with an investigation of
static, dynamic, and control characteristics of a non-linear piezoelectric laminated beam
subjected to mechanical, temperature, and electric excitations. Pai et al. [4] proposed a
refined model for non-linear composite plate laminated with piezoelectric layers. Yu [5]
reviewed recent studies of linear and non-linear theories of elastic and piezoelectric plates.
Sreeram et al. [6] investigated a non-linear hysteresis modelling of a piezoelectric actuator.
Librescu [7] proposed a refined geometrical non-linear theory of anisotropic laminated
shells. Linear thermo—electromechanical behavior of distributed piezoelectric sensors and
actuators has also been recently studied [8, 9]. A theory on geometrical non-linearity of
piezothermoelastic shell laminates simultaneously exposed to mechanical, electric, and
thermal fields has been recently proposed [10]. Tzou and Zhou [11] investigated static and
dynamic control of a circular plate with geometrical non-linearity. In this study, static,
dynamic and control effects of a piezothermoelastic laminated beam with an initial
non-linear large static deflection (the von Karman type geometric non-linear deformation)
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and temperature/electric inputs are studied. System equations are defined and simplified
to compare them with a classical non-linear beam equation first. Analytical solutions,
including all design parameters, of non-linear static deflection and free vibrations of the
non-linearly deformed beam are derived. Active control effects on non-linear static
deflections and natural frequencies imposed by the piezoelectric actuators via high control
voltages are investigated.

2. NON-LINEAR PIEZOTHERMOELASTIC LAMINATED BEAM

A piezothermoelastic laminated beam is shown in Figure 1, in which two piezoelectric
layers are perfectly bonded on the top and the bottom surfaces of a steel beam. It is
assumed that the laminated beam undergoes a von Karman type geometrical non-linearity
and temperature and electric inputs. Dimensions of the beam are: L the beam length, b
the beam width, £, the steel layer thickness, /, the piezoelectric layer thickness. Thus, the
total laminated beam thickness is & = h, + 24,.

Simplifying the governing equations of the nonlinear piezothermoelastic shell laminate
[12], one obtains the non-linear piezothermoelastic beam equations in the longitudinal (x)
direction and the transverse (z) direction, respectively:

ON,. o 0°M.. | ON.. Ou. u. o
oy T4= phii, a2 T oy ox T N e T4 phii., (1a, b)

where the mass per unit length ph = X | p. dz = 2p, h, + p. h. ; p, and p, are the densities
of the piezoelectric layer and the elastic steel layer, respectively. N,. and M,, are the
membrane force and bending moment per unit width. Since the beam width b is constant,
one can define N, = bN,, and M, = bM,,.. Note that the forces and moments include all
elastic, electric, and temperature effects:

2
N, = <YA +2Y,4,+ 24, e“>s‘3\, + e31 b(P5; + ¢51)
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Figure 1. A piezothermoelastic laminated beam.
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+ [(”p‘ —, )(J 0zb dz + J 0zb dz> — J 0zb dz], (2b)
2L —(he 12+ hy) e 12 —he 2

where A = bh,, A, = bh, are the cross-sectional areas of the elastic steel layer and the
piezoelectric layers, respectively; Y and Y, are Young’s moduli of the steel and the
piezoelectric material; I = bh} /12, I, = bh, /12 + bh, (h. + h,)*/2 are the area moments of
the steel layer and the piezoelectric layer, respectively; ¢$; and ¢5, are the control voltages
applied to the top and the bottom piezoelectric layers; 0 is the temperature variation; es;,
&3, ps and 4, are the piezoelectric stress coefficient, the dielectric coefficient, the pyroelectric
coefficient, and the stress—temperature coefficient for the piezoelectric material,
respectively; 2 is the steel stress—temperature coefficient; 5%, and k., are the membrane strain
and bending strain; and r* = (k. + h,)/2 is the actuator moment arm. Also, one can define
P« = bqy, p- = bg. (mechanical excitations per unit length), and m = pbh = 2p, A, + pA
(mass per unit beam length). Then, equations (1a) and (1b) can be rewritten as

0N, 0°M,  ON, Ou. 0%,

oy TP M et o TN e

M. < YI42Y,1 420, >x T en (% — 65)

+ p. = ni.. (3a,b)
Using equations (2a) and (2b), one can write the axial force and bending moment in a
compact form:

No=Rs, + No+ N.,  M.=Dr.+ M.+ M., (4a, b)

where K is the membrane stiffness K = (YA + 2Y, 4, + 24, (¢3, /exs)); D is the bending
stiffness D = (Y1 + 2Y, I, + 21, (¢3, /e33)); s% is the membrane strain and «,, is the bending
strain with the von Karman type non-linearity:

$% = Ou, [0x + 3 (Ou. [0x)?, Koo = 0, [0x = —0%u. [0x*. (5a, b)

Ni is the axial force induced by the temperature rise; M. is the moment due to the
temperature rise; N; is the axial force induced by the control potential; and M is the
control moment induced by the control potential:

N = e5 b(d5: + ¢5)), M = e bri(¢pss — ¢5)), (6a, b)

—he |2 he 2+ Iy he |2
N, = [(@ Pi_j, >< f 0b dz + J 0b dz> — J 0b dz], (60)
&3 —(he 2+ ) he 2 2
e —he [2 he |2+ Iy he 2
M. = |:<31 P _ Ay ><J 0zb dz + J 0zb dz) — 2 J 0zb dz:|. (6d)
2 —(he 2+ hy) he 12 —h 2

Boundary conditions at the two ends of the laminated beam, x =0 and x = L, are
N.=N¥ or u,=u¥; M.=MF or p.=p¥ (7a, b)
OM, |0x + N, Ou. |[Ox = Q¥ or u.=u¥, (7¢)

where the quantities with the asterisk * are the prescribed values on the boundaries. Note
that usually either force boundary conditions or displacement boundary conditions are
selected for a given physical boundary condition.
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2.1. SIMPLIFICATION OF THE BEAM GOVERNING EQUATIONS

It is assumed that the mechanical excitations in the longitudinal and transverse
directions are zero, i.e., p. = p, = 0. Substituting the axial force and bending moment into
equations (3a) and (3b), one can write

~£ auY | au €3 D3 o
K@x|:6x+z<a >]+€31 o (¢33+¢31)+|:< -~ /117)
—hy |2 he 12+ hyy h, 2
X<J g—ebd +j ggbdz>— f gebdz}zn’m}, (8a)
—(he 12+ hy) X he |2 * —h, 2 x
~ 0% 02
{—D WL{; + €31 bl’a ﬁ (¢3z ¢31) + |:<e31 ;U3 )»p >
—h, he 2+ hy A2 ho
<J 2zbd —|—j gqmd)—ij 2zbdz
—(h, 2+/xﬂ) he 2 X —h, 2
Ou, 0
LR s
—h, he 12+ hyy h, 2
(J bd;+j ggbd> f gebdz}}?‘f
—(he 2+ hy) he 2 * —he 2 x X
auY § €31 D3
+ 2 +e?| b(¢z3+¢3|)+ Tn_/lp
—h, 2 he 12+ hyy he |2 azu
X <J 0b dz + J 0b dz> — A j 0b dz:|} o i . (8b)
—(he 2+ hy) he |2 —h, 2 X

Since the longitudinal inertia is negligible, i.e., mii, ~ 0, factoring the partial derivatives
and regrouping the force and moments gives

ON, /0x = 0, 0*M, [0x* + N, 0*u. |0x* = mi.. (9a, b)

+

Equation (9a) implies that the axial force N, is not a function of x, i.e., N, = constant.
Considering individual elastic, control, and temperature effects, one can further write
equation (9b) as

—D &*u. [0x* 4+ 0°M< |0x* 4+ 0°M" |0x* + N, &*u. |0x* = rinii., (10)
where N, = K[ou, /0x + % (0u. /0x)’] + N¢ + N.. The non-linear piezothermoelastic beam
equation can be further simplified when boundary conditions are specified. In the following

two cases, one is used to compare with the standard equation and the other is for a detailed
parametric study.

2.2. FREE EXPANSION/CONTRACTION
If the longitudinal motion either at x =0 or at x = L is not constrained (free



PIEZOTHERMOELASTIC BEAMS 509

expansion/contraction), the axial force N, vanishes when the boundary conditions are
imposed. The differential equation then can be simplified to

— D d*u. Jox* + f(x, t) = i, (11)

where f(x, t) = °M¢ [0x* + 0* ML /ox*. This is a standard form of the beam transverse
vibration [13]. However, note that the physical meaning is much more complicated than
the conventional form, due to the coupling of mechanical, electric, and temperature fields
in the non-linear piezothermoelastic laminated beam.

2.3. SIMPLY SUPPORTED WITH BOTH ENDS FIXED

Boundary conditions for a simply supported piezothermoelastic laminated beam with
both ends fixed are

u.=u,=0 and M,=0, (12)

at both beam ends: x =0 and x = L. Furthermore, it is assumed the voltage ¢ and
temperature variation 0 are uniform in the x direction. This implies that ¢ and 6 are not
functions of co-ordinate x. Then, the transverse equation becomes

—D 0*u. |ox* + N, 0°u. |ox> = rinii., (13)

where the axial force N, = K[ou, /0x + 1 (du. /0x)*] + NS+ N.. Solution procedures for
the simply supported non-linear piezothermoelastic beam equation are presented next.
Numerical results and control effectiveness are presented in case studies.

3. SOLUTION PROCEDURES

In order to investigate the coupling among elastic, electric, temperature and control
effects of the piezothermoelastic laminated beam, analytical solutions, including all design
and control variables, are derived. The solution procedures are divided into two parts. The
first step is to solve for non-linear static solutions and the second step is to solve for
dynamic solutions with respect to the non-linear static equilibrium position. To separate
the static and dynamic solutions, one can write the displacement and axial force as

Uy = Uyxys + Uxd, U = U + U, (14)
N\' = N‘cs + N‘nd, (;b%] = d)g/,s + (rbgj‘d’ (15)

where the subscript , is the static component and , is the dynamic component; u,, u.,,
u.q. and u., are, respectively, the longitudinal/transverse static and corresponding dynamic
displacements; N, and N., are the static and dynamic axial forces; ¢5;, and ¢35, (j =1, 3)
are the static and dynamic applied voltages, respectively. Then, the equation of motion
and the axial force equation can be expressed as

2 2
> + (N.\Zs + N,\x,d))clll;lf; + aazzid = ﬁll:[:_d, (16)

dx ox*

—D

~<d4u:,x a“”zd

_ ol (u  Oua) ) (due | Oua . N ,
e N = R (S Bt 4 (G G o o+ 3 00

where the static and dynamic axial forces induced by the applied control voltages are
Niy = e b(Pss, + d51s)s Now = €31 b(d53.0 + P51.4)- Usually, the static axial force N, is more
inferential than the dynamic axial force N,,[14]. Thus, neglecting the dynamic axial force
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N.q, one can define the static displacement and force equilibrium equations of the
piezothermoelastic laminated beam subjected to static electric and temperature loads:

DN(d4uz>x /d-x4) - N\',x (dzuz‘.v /d-xz) = 0, N\c.v = k[(du,‘(vv /dx) + % (duz‘s /dx)2] + Nf’.‘y + N{('

(18, 19)
The partial differential equation for the dynamic motion becomes
4 . 0%y .
—D(0*u-, /0x*) + N,, g2 ) = Mk (20)

Equations (18-20) and equation (12) constitute the governing equations and boundary
conditions for the simply supported non-linear deflection and vibration of the simply
supported non-linear piezothermoelastic laminated beam. Since the vibration analysis is
based on the statically non-linear deformed position, static solutions of the non-linear
piezoelectric laminated beam are presented first. Dynamic analysis of the beam with the
initial non-linear deflection is investigated next.

3.1. STATIC SOLUTION OF A NON-LINEAR PIEZOTHERMOELASTIC BEAM

For the static problem defined by equations (18) and (19), the static deflection u., and
the static axial force N, are evaluated. Recall that the longitudinal displacement boundary
conditions are

Uy, =0, at x=0 and x=L. 21

Integrating the slope over the beam length and using the boundary conditions results in

b (du
L < d)}‘) dx = Uy |A\’=L - ux,.y |x=0 = 0 (22)

Integrating the static axial force N.;, equation (19), over the beam length and applying
equation (22), one can derive

L1 du.,\
J {I? [Nes — Ny, — Ni]—3 < dx> }dx = 0. (23)
0

Since N,, = constant, the axial force equation becomes

Nu=57 J <d””> dx + + f (N, + N') dx. (24)

Defining an eigenvalue A = ./N,, /D and simplifying the static differential equation (18)
of the non-linear piezothermoelastic beam gives

du., Jdx* — 72 dPu., [dx® = 0. 25)

The general solution for the static differential equation is
u., = Ci + C; x + Cssinh Ax + C, cosh Ax, (26)

where C; (i=1,2,3,4) are the integration constants determined by the boundary
conditions. For the simply supported beam defined above, the boundary conditions at
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x=0and x = Lare: u., = 0 and M, = 0 where M, = — D d’u., /dx> + (M, + M.). Then,
imposing the boundary conditions to the general solution gives the four equations:

Ci+Ci=0, Ci+ C, L+ Cs;sinh AL + Cycosh AL =0, (27a, b)
—D(Ci 1) + (M:, + M) =0, (27¢)
—D(C; 2*sinh AL 4+ C4 2> cosh AL) 4+ (M, + M') = 0. (27d)

Solving these four equations, one can determine the constants C;. Upon substitutions, the
static transverse displacement can be derived as

u., = [(M¢, + M.)/D2*] [cosh /x — (tanh AL/2) sinh ix — 1]
= [(M¢, + M.)/D)*] (cosh A(L/2 — x)/(cosh AL/2) — 1). (28)

Assuming a dimensionless quantity v = A(L/2) = (L/2)\/N., /D, 3> =4&*/L?, and
N.,=4’D/L? one can redefine the static transverse displacement equation as

4 t 2
= WMt MOLT o oh (1 — 2x/L)Jcosh v — 1), (29)
4Dv?
Since
L 2 ” 4 2 L
i} gy = | W MOL FT G 01— 2x/L) dc
, \ dx 2Dv coshv A
= [(M¢, + M.)*L*/8D*?*] (tanh v/v — 1/cosh® v), (30)

one can obtain the static axial force

v - Ko+ myr <tanhv 1

2L 8D~2D2 v - cosh? U> + (N.\‘,x + N\) (3])
Furthermore, since N., = (40°D)/L? the above equation can be simplified to

402D
L*

& ¢ (\N2T 2
KM, + M,)’L <tanh v 1 )

. T ol U) + (N + N =

Accordingly, with specified electrical control potential ¢ and the temperature rise 6, one
can calculate the corresponding bending moments M, M. and the axial forces Ng,, N.
and then solve the dimensionless quantity v in equation (32). Next, one can solve the total
static axial force N, by equation (31) and the static transverse displacement u., by equation
(28) where 4> = (2v/L).

3.2. DYNAMIC ANALYSIS OF BEAM WITH AN INITIAL NON-LINEAR DEFLECTION

It is assumed that the vibration analysis is in the vicinity of the non-linear (static)
deformed equilibrium position. Frequency control of the piezothermoelastic laminated
beam with an initial non-linear deflection is studied in this section. From equation (20),
the free dynamic partial differential equation can be written as

ﬁ 641/{:‘(/ /ax4 - N\',A\' azu:,(/ /a-x2 + n_,”/.izd = 0 (33)

Examining the equation reveals that this is the case of a transversely vibrating beam with
axial force effect. Note that the electric and temperature effects are added to the classical
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elastic problem [15]. When the beam oscillates at one of its natural modes, the solution
of dynamic differential equation has the form of

u.qs = U(x) sin (ot + @), (34)

where U(x) is the modal shape function, w is the frequency and ¢ is the phase. Substitution
and simplification gives an ordinary differential equation:

D d*U/dx* — N, d*U/dx* — mw*U = 0. (35)

The solution of this equation, satisfying the prescribed boundary conditions, furnishes the
modal shape functions. For the simply supported beam, the dynamic boundary conditions
are zero displacements and zero moments at x =0 and x = L:

U(x) =0, d*U(x)/dx* = 0. (36)
These conditions are satisfied by taking the modal shape function as
U, (x) = C;sin (inx/L), 37
where i is the mode number and i=1,2, 3, ..., co. Substituting this expression into
equation (35) gives the natural frequency corresponding to the mode shape U; (x):
w; = (P L) /D1 + N, L*/*Dr’. (38)

It is observed that the natural frequency is clearly larger than that obtained when the axial
force N,, is absent. A case study in which non-linear deflections, temperature and control
effects of the non-linear piezothermoelastic laminated beam are studied is presented next.

4. CASE STUDIES

It is assumed that a simply supported three layer PZT/steel/PZT beam with dimensions:
width b = 0-0508 m, length L = 1 m, steel thickness 4, = 0-00635 m, and lead zirconate
titanate (PZT) thickness 4, = 254 x 10~ °m is used in the case study, Figure 2. Detailed
material properties are summarized in Table 1 and Table 2.

Next, the bending stiffness D and the membrane stiffness K can be respectively
calculated as: D = YI42Y, I, + 21, €3 Jes; = 93-765 (Nm?); K= YA +2Y, A, + 24, ¢%, |
£33 = 23986 x 10° (N). Note that the values of YI, 2Y,I,, and 2I,¢3 [e;; in the
PZT/steel/PZT beam are 80, 18 and 2% of the total bending stiffness D, respectively, and
values of Y4, 2 Y, /T,,, and Z/T,, €3 Jexs are 928, 6:5 and 0-7% of the total membrane stiffness
K. Tt is assumed that applied control voltages ¢5; and ¢5, are uniformly distributed and
¢5 = — @5 = ¢, and the temperature rise 0 is also uniform along the x-axis and is of
linear variation through the thickness: 0(z) = az + e, where a = (6, — 0,)/(h. + 2h,),
¢ = (0, + 6,)/2; 0, is the top surface temperature and 6, is the bottom surface temperature

b
SHLERE
7he
hp ]
L

A

Figure 2. A PZT/steel/PZT laminated beam.



PIEZOTHERMOELASTIC BEAMS 513

TABLE 1
PZT material properties

Young’s modulus (GPa) Y=Y, =7Y.=6l
Shear modulus (GPa) G,=G.=G, =2364
Poisson’s ratio =029
Density (kg/m’) p="77x 10
Thermal expansion coefficient (m/m/°C) o=12x10"°¢
Thermal stress coefficient (N/m?/°C) 2, =103 x 10°
Electric permittivity (F/m) &3 = 165 x 1078
Piezoelectric constant (C/N (m/V)) dy =171 x 1072
Piezoelectric stress (C/m?) ey = 10:43
Pyroelectric constant (C/m?/°C) ps=025x%x 10"
TABLE 2

Steel material properties

Young’s modulus (GPa) Y.=Y,=Y.=06895
Shear modulus (GPa) G, =G.=G,.=2652
Poisson’s ratio =030
Density (kg/m?) p="775x10°
Thermal expansion coefficient (m/m/°C) o=11x10"°
Thermal stress coefficient (N/m?/°C) A =108 x 10°

of the beam. Note that 0, = —0, = 0 which implies that the total temperature difference
between the top and bottom surfaces is 26. Then, the electric control bending moment M¢
and the temperature induced moment M. are

M = 0-003499¢ (Nm), M’ = 0-348560 (Nm), (39, 40)

in which 98% is due to the steel and only 2% is due to the PZT in the temperature induced
bending moment. (Recall that the ceramics are less sensitive to temperatures when
compared with steels.) Equation (32) then can be simplified to

(tanh v/v — 1/cosh®v) = 64v* D’/ R(M¢ + ML, 41)

Denoting y, = (tanh v/v — 1/cosh? v) and y, = 64v*D*/[K(M¢ + M"')’L*], one can plot y; (v)
and y, (v). Intersections of y, (v) and y, (v) gives solutions v of equation (41), such as shown

0.6

« 04—

>
°

c

©

i

> 02—

0 0.5 1.0 1.5
Dimensionless quantity v
Figure 3. Solution v for various control voltages: ——, 50; ----, 100; — -—, 150; --- --- ,200; ——, 250; ——-, 300 V;

temperature 6 = 10°C.
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y1andy,

Dimensionless quantity v

Figure 4. Solution v for various temperatures (voltage ¢ = 100 V): ——, 10; ----, 20; — -—, 30; ==+ - ,40; ——,
50; ——-, 60°C.
0.6
&04= g T
>
°
c
©
=
0.2
0 1.5
Dimensionless quantity v
Figure 5. Solution v for various beam lengths (6 = 10°C and ¢ = 100 V): ——, 0-5; ----, 0:6; — -—, 0-7; ===+ === s
0-8 ——, 0:9; ——-, 1-0m.

in Figures 3-5. Then, the axial force N, and the beam center deflection (at x = L/2) can
be calculated and its temperature/control effects studied:

Noy = 40°D/L%  uy |oorp = (MS+ MY)LY4Dv*(1jcoshv — 1). (42, 43)

Detailed numerical results of the PZT/steel/PZT laminated beam subjected to various
temperatures and control voltages are listed in Tables A1-A3 in Appendix A. Static
deflection of the beam center (x = L/2) with respect to the applied control voltage (at

3.40

3.25

3.10

2.95

Deflections u,s (mm)

2.80 ‘ ‘
100 200 300

Voltage applied (V)

Figure 6. Static deflections versus voltage changes (temperature 6 = 10°C).
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a1
\\\\‘\\\\‘\\\\‘\\

Deflections u,s (mm)

10 20 30 40 50 60
Temperature rise (°C)

Figure 7. Static deflections versus temperature changes (voltage ¢ = 100 V).

3.0

2.0

Deflections u,g (mm)

1
0.5 0.6 0.7 0.8 0.9 1.0
Length of beam (m)

Figure 8. Static deflections for various beam lengths (6 = 10°C and ¢ = 100 V).

0 = 10°C), temperature rise (at ¢ = 100 V), and beam length (with ¢ = 100 V, 6 = 10°C)
are plotted in Figures 6-8. Note that the 10°C temperature represents a total of 20°C
difference between the top and bottom surfaces. The deflection and voltage relation,
Figure 6, gives a general guideline that the control voltage induced displacement can be
used to compensate the temperature induced deflection or the non-linear deflection.
Equivalent axial force with respect to the beam center deflection is presented next.
Figure 9 shows the axial force versus the static deflections of the beam center,
which reveals that the induced axial control force stiffens the beam and consequently the
natural frequencies of the beam increase. (Note that this force can also be viewed as

3000

2000

1000

Axial force N, (N)

1 ‘ 1 1 ‘ 1 1
0 15 3.0 4.5 6.0

Transverse displacements of beam middle point u,s (mm)

Figure 9. Axial forces versus beam deflections.



516 Y. BAO ET AL.

L R ——
— a2l = O----
< 30 — e o=
S So--
& L
©
oo C
S5 20—
£ r
2 [
% L
ag; e —— 0-—-— —-——- ———-
w S

I I | I | | | | | . )
0
100 200 300

Voltage applied (V)
Figure 10. Frequency variations versus control voltages (¢ = 10°C): O, fi; (I, f2; V, f5.
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Figure 11. Frequency variations versus temperatures (¢ = 100 V): O, fi; (1, f2; V, f3.

an axial control force.) The frequency increase can be expressed by the quantity
{[1 + (N., L*/i*Dn*)]"> — 1} x 100 percent, where i is the mode number, and the results are
shown in Figures 10—12. The percentage of variation for the first mode is higher than those
of the higher modes. The numerical results suggest that both static deflection and dynamic
behaviors of the simply supported non-linear PZT/steel/PZT laminated beam are
influenced by the temperature and they also can be controlled by the control voltages
applied to the piezoelectric actuators.

30

r o
e [
o L s
7] s
g 20— o
5 r O
=S
2 | Lo
§ 10+ P
= preg
g [ [
E ;’ _D,/'/-’DAI
T '———T—_——_—_V———
0 T T T L1 [ IR R
0.5 0.6 0.7 0.8 0.9 1.0

Length of beam (m)
Figure 12. Frequency variations versus lengths (¢ = 10°C, ¢ = 100 V): O, fi; O, f2; V, f3.
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5. SUMMARY AND CONCLUSIONS

The conventional analysis of piezoelectric laminated structures and systems often utilizes
small deflection linear theories. Response behavior and control characteristics of
non-linear piezoelectric systems are relatively unknown. In this study, non-linear static
deflections, dynamic characteristic, temperature effects, and control characteristics of a
simply supported piezothermoelastic laminated beam with an initial non-linear large static
deflection were investigated.

A detailed mathematical model of the piezoelectric laminated beam was defined and
analytical solutions including temperature, control voltage, induced axial force and
bending moment effects were derived. The reduced non-linear beam equation was identical
to the classical non-linear beam equation, if the temperature and electric terms were
removed. Non-linear static deflections with the influence of temperature and control
voltage were studied. Small amplitude oscillations with respect to the non-linearly
deformed static equilibrium position were investigated. It was observed that the total
bending stiffness of the PZT/steel/PZT laminated beam is 80% due to the steel and 20%
due to the PZT (elasticity: 18% and piezoelectricity: 2%); the total membrane stiffness is
92-8% due to the steel and 7-2% due to PZT (elasticity: 6-:5% and piezoelectricity: 0-7%)
in the laminated beam. The stiffness (contributed) by piezoelectricity is relatively
insignificant. Simulation results also suggested that the voltage induced control
displacement/force can be used to compensate the non-linear static deflection, temperature
effects, and natural frequencies of the piezoelectric laminated beam.
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APPENDIX A: DETAILED NUMERICAL RESULTS

TaBLE Al

Voltage effect of the laminated beam (0 = 10°C, L = 1 m)

freq. increase (%)
A

roots axial force mid. point disp. .
o(V) v N, (N) ., (mm) i= i=2 i=
50 1-248 584-2 2:942 27-72 7-60 3-45
100 1-281 6155 3-018 29-04 7-99 3-63
150 1-314 647-6 3-089 30-37 8-39 3-81
200 1-345 6785 3-159 31-65 878 3-99
250 1-375 709-1 3:226 32:90 9-16 4-17
300 1-405 740-4 3-:290 34-17 9-54 4-35
TABLE A2
Temperature effect of the laminated beam (¢ = 100V, L = 1 m)
freq. increase (%)
roots axial force mid. point disp. . A
0 (°C) v N.s (N) u., (mm) i=1 i=2 i=3
10 1-281 6155 3-:018 29-04 7-99 3:63
20 1-791 1203-1 4-110 51-66 15-11 698
30 2-147 17289 4-810 69-36 21-12 9-89
40 2429 22129 5-329 84-15 26-40 12-50
50 2:667 2667-8 5743 97-05 31-17 14-90
60 2-877 3104-4 6-081 108-68 35:60 17-16
TABLE A3
Effect of beam length (0 = 10°C, ¢ = 100 V)
freq. increase (%)
roots axial force mid. point disp. A
L (m) v N., (N) u., (mm) i= i=2 i=
0-5 0-483 350-0 1-165 4-62 1-17 0-52
0-6 0-650 440-2 1-564 822 2-12 0-95
0-7 0-817 5109 1-957 12-72 333 1-49
0-8 0-979 561-7 2-332 17-83 4-74 2-14
09 1-134 595-4 2685 23-34 6-32 2-85
1-0 1-281 6155 3-:018 29-04 7-99 3-63




